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i. Formulation of the Problem. It was shown in [i] that there is more than one cor- 
rect mathematical formulation for a Lekhnitskii problem concerning the deformation of an 
elastic half-space with a cylindrical shaft under its own weight. (We should also point out 
[4], where the analogous problem was examined for the case of an inclined shaft.) The selec- 
tion of the conditions at infinity should correspond to the physical reality of the problem. 
Since an infinite half-space is an idealization of a large but finite elastic body, specific 
mechanical problems should be subjected to asymptotic analysis. Here, we study the deforma- 
tion of finite bodies with long thin shafts under the influence of body forces. These bod- 
ies are as follows: a gravitating sphere (a) (Fig. i); and a weighable thick slab whose base 
(b) lays on a smooth rigid surface (c) bound to a perfectly rigid half-space or (d) does 
not have supports (Fig. 2). 

The studies [2, 3] noted the existence of the following solution to this problem in an 
infinite region (Fig. 3): 

u~ ~) (x) = vh2?z [2 ( l  - -  v) ~ r ] - l ,  u~ ~) (x) = ( t  - -  2v) yz ~ [4 ( l  - -  ~) ~1-~ + 

+ v?h 2 [2 ( i  -- v) ~1-~ in  ( r h - ~ ) ;  ( 1 . 1  ) 

~ (i_ h~ ) ( h~) ~ ,  (u(~); x) ~ _ ~ -7~ %~ (u(~); x) = ~ i + ' i - -  ~ ~ ' ( 1 . 2 )  

~ (u(~); x) = % O~z (u(~); x) = O. 

Another solution, found in [I]: 

(~) [2(i + v)~]-l?zr,  uz = y  + ~ ] - 1 ( z ~ +  u,. = - -  v (2) [4 (i  v) vr2); ( 1 . 3 )  

~(u(~);  x ) =  ~z, ~,,(u(~); x ) =  %~ (u(~); x ) =  ~(u(~);  x ) =  O. ( 1 . 4 )  

Both solutions have obvious flaws. The component Ur (2) of field (1.3) undergoes signi- 
ficant growth at r + ~. Solution (i.i) does not have this shortcoming, but in (1.2) the 
stresses Orr and %~ do not decay at r § ~, while at Izl > 2y-iD(v -~ + i), we observe inter- 
penetration of the walls of the shaft (i.e., u r < -h at r = h). It should be emphasized 
that in Eqs. (1.3) and (1.4), with an increase in depth, deformation leads to an increase in 
the cross section of the shaft. These disparities mean that the region of application of 
the problem of an infinite body is limited. Thus, the solutions of all of the problems will 
henceforth be compared only near the outlet hole of the shaft. 

The asymptote of the solution of the problem of a shaft in a finite body is determined 
by the Lekhnitskii solution only in situation "c." In the other three problems, the princi- 
pal term of the asymptotic solution consists of the following displacement and stress fields: 

u , =  o~(2~t)-1[( t  - -  v ) ( l  + v)-~r  + h~r-1], 
uz - --o~vz~t-](l § ~)-1 ur O; ( 1 . 5 )  

~,r= a~(t --h2r-2), %~ = o~(i +h2r -2) (1.6) 

[see Eqs. (2.4), (3.8), and (5.7)]. These fields correspond to the axisymmetric tension 
(compression, at o~ < 0) of a half-space with a cylindrical shaft. Thus, for unlimited ex- 
pansion of the region, there is no correct approach to the Lekhnitskii problem in cases "a", 
"b", and "d." 

The very presence of solution (1.5)-(1.6) in the representation of the stress-strain 
state near the outlet hole of the shaft is not unexpected: it should be pointed out that 
the relative contribution of the fields (1.5)-(1.6) to the asymptotic solution increases 
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with an increase in the radius R of the sphere or the radius d and thickness R of the slab. 
It is a well-known fact that the stresses in horizontal planes predominate in rock mechanics 
[5, 6]; wells and shafts are designed not on the basis of the Lekhnitskii formulas, but with 
allowance for "coefficients of lateral stresses and thrust." 

In Part 3 we check the following fact: if a compressive load of intensity p is applied 
to the lateral surface of a slab with a shaft on a smooth surface, then the principal term 
of (1.5)-(1.6) asymptotically vanishes at a certain value of p. The minor term of the asymp- 
totic solution coincides with the Lekhniskii solution (1.1)-(1.2). However, no such coinci- 
dence occurs in problems "a" and "d." In the case of the gravitating sphere, this fact is 
connected with the curvature of the surface (which in turn results from the fact that the 
correction terms for solution (1.5)-(1.6) are of the same order of magnitude as the asymp- 
totes of the field (1.1)-(1.2) present in the minor term. The minor asymptotic term for a 
slab with an unsupported base (problem "d') is a linear combination of the solutions (i.i)- 
(1.2) and (1.3)-(1.4) of the Lekhnitskii problem. 

Many investigations have dealt with the formulations of problems of the theory of elas- 
ticity for infinite bodies (see [7, 8], etc.). Special difficulties arise in those problems 
which involve infinite energy intervals. Basic postulates on the existence and uniqueness 
of solutions cease to be valid in Such cases, and a careless treatment entailing additional 
conditions at infinity leads to erroneous conclusions and various types of paradoxes [8, ex- 
amples in Part 7 of Chapter 3]. The Lekhnitskii problem being examined here belongs to this 
class of problems. 

The asymptotic analysis performed in the present study permits the conclusion that the 
Lekhnitskii formulas are valid only for certain interpretations among the large number of 
possible interpretations of the problem in the infinite region. Specifically, the formulas 
are to be regarded as the limit of problems for large but finite elastic bodies. 

Direct passage to the limit in the infinite region in other problems is either incorrect 
or leads to solutions different from the Lekhnitskii solution. 

2t Gravitating Sphere with a Shaft. Let S R be a sphere of radius R with center O. 
The sphere is filled with an elastic material having the Lame constants X and D. The quanti- 
ties g and y are acceleration due to gravity and the specific weight of the material on the 
surface. We will use C h to denote a cylinder {x:r _~f.h} with a small radius h; here, (r, 
~, z) are cylindrical coordinates. We set ~ = SR\G , G = {x~ ~ : z > R - H} (H is the 
depth of the shaft). We will assume that R >> H m h. We will examine the problem of the 
deformation of the body ~ under the influence of the gravitational field 

L(O/Ox)u(x) + F(x)=  O, x ~ Q; o(~)(u; x )=  O, x ~ OQ, (2.1) 
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where L is an operator in the Lamb system; u is the displacement vector; ~(u) is the stress 
tensor; n is the vector of a unit outward normal; o (n): ~-n; F(x)=--gpR-~e ~ ; eP is the unit 
vector; (p, 8, ~) are spherical coordinates. Problem (2.1) should be treated as a problem in 
a region with a singularly disturbed boundary. According to [9], far from the shaft G the 
field u is described mainly by the solution v of the problem of a solid gravitating sphere. 
This solution has the form 

u n =  [10(~ ~- 2~)R]-~gp[9 2 -  B2(6~ ~- 5X)(2~ + 3X)-~]; ( 2 . 2 )  
% ~ =  --V[10(s -i- 2 b ) R ] - 1 ( 6 ~ - ~  5s 2 -  p2), ( 2 . 3 )  

% 0 =  %r = - -y[10(L + 2~)R]-*[ (6~  q- 5s ~ -  p ~ ) +  4~p21. 

H e r e  and  b e l o w ,  t h e  c o m p o n e n t s  o f  t h e  f i e l d s  t h a t  a r e  e q u a l  t o  z e r o  a r e  n o t  i n d i c a t e d .  The 
vector v leaves a closure error in the boundary conditions for 8G a 8~ from (2.1). Thus [9], 
boundary layers exist near 8G: a two-dimensional boundary layer for the middle part of the 
shaft and two three-dimensional boundary layers for its end and outlet hole. Since we want 
to compare the solution of problem (2.1) with the Lekhnitskii solution, we will restrict 
ourselves to study of the last boundary layer. 

We introduce "stretched"'dimensionless coordinates ~ = A-~(x -- N), where x represents 
cartesian coordinates and N = (0, 0, R) is the north pole of the sphere 3S R. Considering 
the relationship between the dimensions R, H, and h, we conclude that in the coordinates 
(after the formal transition to h = 0) the region ~ is transformed into a half-space R_ a = 
{$ : $z < 0} with an infinite shaft C~. In accordance with (2.3), the error of the field v 
in the boundary condition on the lateral surface G is given by the formula 

~r~(v; x ) =  - - [5 (~  + 2p) ] -~2p?R( l  + O(hB-Xlgl)). ( 2 . 4 )  

T h u s ,  t h e  l e a d i n g  t e r m  o f  t h e  b o u n d a r y  l a y e r  hw~ i s  t h e  s o l u t i o n  o f  t h e  e l a s t i c  p r o -  
b l e m  in R-3\CI under the condition that on the lateral surface we assign a constant normal 
stress 

W0(~) --  - -  [5(~ + 2 ~ ) ] - l ~ X ( ~  ( 2 . 5  ) 

g2 ~--1/2 X~) y(O) 0. Xl'~ = ( ~  + ~2~ , = ~ = ( 2 . 6 )  

3. Circular Plate with a Shaft on a Smooth Rigid Base. Let H--{x~ c a : 0 < z < R}, 
= H\G (G is the set from Part 2, d is the radius of the plate, and R is its thickness, d 

R m H m h). We will examine the problem of the deformation of a body ~ under its own weight 
ye a and compressive radial forces p applied to the lateral surface S of the slab E. The slab 
lays on a perfectly rigid smooth base. The upper part of the slab is free of stresses. The 
displacement vector u is satisfied by the equations 

L(a/ax)u(x)-  ?e(3)= 0, x ~ Q; 

o(a)(u; y, B )=  0, A < lYf< d; 

ua(y, 0 ) =  0, zya(u; y, 0) = 0, ] = t ,2 ,  [ y [ < d ;  

o(')(u; y, z)= --pc('), lYI= d, z ~ (0, /~); 

aW)(u; x )=  0, x ~ OG f} _q. 

(3.1) 
(3.2) 
(3.3) 
(3.4) 
(3.5) 

Here, y = (xl, x2). The particular solution v ~ of the problem of a weighable layer [Vr ~ = 
~,0 = 0, Vz~ = (I/2)7(2 > + l)-iz(z - 2R)] eliminates the inhomogeneity in equilibrium 
equations (3.1) and satisfies (3.2)-(3.3) but leaves an error in boundary conditions (3.4)- 
(3.5). Using the smallness of the ratio R\d, we account for conditions on the lateral sur- 
face of the slab by means of the solution ~ = (~r, 0) of the problem of an axisymmetric gen- 
eralized plane-stress state in a circle {y: lyI<d} with the boundary condition 

aT, 2~t), [ a~,, ] ~ 
2}t Or 1 2~tq-s ~ 7 -  + r - l g e e  --  2 2~t-kL R ? - - p  a t  r =  d. ( 3 . 6 )  

I t  i s  c l e a r  t h a t  ~ r  = [ 4 > ( 2 >  + 3 l ) ] - Z ( l R ~  - 2 (2>  + l ) p ) r .  The c o m p o n e n t s  o f  t h e  t h r e e - d i m e n -  
s i o n a l  displacement vector v t beyond the circumference of the lateral surface S of the slab 
are established by means of the equalities 

1 1 ~r = ~,  ~$ = o, ~ = - ~ ( i  - ~ ) - ~  ( a ~ r / a ~  + ~ - ~ ) .  ( 3 . 7  ) 
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Let us explain Eqs. (3.6) and (3.7). Equations (3.7) are the normal equations for a 
plane stress state in a slab of thickness 2R. We change over from Eqs. (3.1)-(3.3) to the 
problem of the deformation of the slab {x~ ca: Izl < R} by an even-numbered continuation 
of u r and u~ and an odd-numbered continuation of u z in R_ 3 Equality (3.6) means that the 
error of the sum ~~ in boundary condition (3.4) on the generatrix of the cylindrical 
surface S has a zero principle vector. It is known that a two-dimensional boundary layer 
forms at the edge of the slab and that this layer decays exponentially into the slab due to 
the above-indicated self-balancing. Thus, near G, v~ ~i approximates the solution of the 
problem of a solid slab H to within O(Rd-1). 

As in Part 2, boundary layers are formed near G; they compensate for the error of the 
field v~ v I in conditions (3.5). The dominant term of the boundary layer, associated with 
the outlet hole of the shaft, has the form hw~ where ~ = h - l ( x - - N )  are the "stretched"var- 
iables, 

w(0)(~)=(ER? -- 2(2~ + ~ ) [ 4 ~ ( 2 9  + %) ]- ~X(0)(~), ( 3 .8 )  

X (~ is the vector (2.6). This solution compensates for the error (I/2)(2 D + k)-I(XR~ - 
2(2~ + k)p) in the boundary condition Orr = 0 on the lateral surface of the shaft. If 

%R? -- 2(29 + ~)p = 0, ( 3 .9 )  

then w ~ 0:, and we must calculate the second term of the boundary layer h2w~(~). This term 
is determined by the formula 

w*(%) = ~ ( i  - ~)-~x(*)(g);  ( 3 . 1 0 )  

= = ~ ~ X~ ) X$1) ~a?[2~(~ + ~[)1/2]-1 X~l) --7(4b) - l l n  (~1+~2), = 0. (3 .11 )  

The s o l u t i o n  (3 .10)  compensates f o r  the  e r r o r  l e f t  by the  f i e l d  ~0 in the  boundary c o n d i  
tion Orr = 0 for 8G. It is not hard to see that to within the rigid displacement in the 
direction of the Oz axis, the sum v~ I near the outlet hole coincides with the Lekhnit- 
skii solution. If condition (3.9) is not satisfied, then there is no such coincidence. 

4. Circular Slab with a Shaft Rigidly Fixed on the Lower Base. We will keep the nota- 
tion from Part 3 and examine the problem of the deformation of a slab with a shaft in the 
case of complete bonding of the lower base to a perfectly rigid half-space R 3 The mathe- 
matical formulation of the problem reduces to system (3.1) with boundary conditions (3.2), 
( 3 . 4 ) ,  ( 3 . 5 ) ,  and 

u(y, 0)= 0, lY I< d. (4.  i) 

The scheme used to study this problem differs little from that described in Part 3. The 
simplifications made are connected with the absence of the term v I in the smooth solution. 
In fact, the field v ~ leaves an error in boundary condition (3.4), which is compensated for 
by the two-dimensional boundary layer around S. This boundary layer is the solution of the 
plane problem on the deformation of a half-strip having one side which is rigidly fixed, by 
virtue of (4.1). Thus, it decays exponentially, while the field (3.7) and the boundary 
layer hw~ are absent. We ultimately find that the three-dimensional boundary layer has 
the form h2w1(%), where w I is the vector (3.10). As in Part 3, the sum v~ I gives the 
Lekhnitskii solution. 

5. Shaft in a Circular Slab Not Having Supports. We will examine the same problem as 
in Parts 3 and 4, but we will assume that the lower base is free of stresses (the slab 
"hangs" above a cavity), while the lateral surface is rigidly fixed 

o(~)(u; y, 0) = 0, iYI< d; (5 .1 )  

u(y, z)= 0, lYi= d, z ~(0 ,  H) ( 5 . 2 )  

[compare with (3.3), (4.i), and (3.4)]. As the dominant term of the asymptote of the solu- 
tion of problem (3.1)-(3.2), (5.1)-(5.2), (3.5), we take the solution v~ the problem of 
the bending of a plate 
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0 __(y)+ [ v--2 v--6 ] 04 
auj 6 1 - v + ~ 247 = ~) Ay ~ (y), (5.3) 

j=1, 2; 

v~ (x) = ~ (y) + R 2 ~ v  ( 2~2 ~i ) Ay~ (y). ( 5.4 ) 
Here ,  5 = R-mz - l / 2  i s  t h e  c o o r d i n a t e  o f  t h e  i n t e r n a l  b o u n d a r y  l a y e r  i n  a t h i n  c y l i n d r i c a l  
r e g i o n  ( t h e  r a t i o  R/d  i s  a s m a l l  q u a n t i t y ) .  The f u n c t i o n  

r  --(32~)- ~ 37(I - -  v)(dR- a)4(l --(rd- ~)2)2 (5 .5)  

is the solution of the problem in the Kirchhoff theory of plate bending 

A ~  (r) = --  6~ (l - -  v) ~-xR -~, l r l < d ,  ~ ( d ) = 0 ,  O~/Or(d)=O. ( 5 . 6 )  

It should be noted that, as in Parts 3 and 4, the boundary conditions in problem (5.6) are 
obtained by examining the problem of a two-dimensional boundary layer. 

The field (5.3)-(5.4) leaves an error in Eq. (3.5). In accordance with (5.5), to with- 
in the minor terms, this error is given by the relations Orr = (3/s)~(l + v)d2R-4(R - 2~h), 
h$ 3 = (I/2)R - ~R, h~ I = Y2, h~2 = Yl and is compensated for by means of the boundary layer 
hw(~ ~ h~wO)(~), where 

w(~ = (3/1~)? ~- 1(i + v)d2R - aX(~ ( 5 .7  ) 

w(~)(~) = (~/~)(t + ~)d~R - ~X<~)(~). ( 5 . 8 )  

As in the problem in Part 3, when condition (3.9) is violated near the outlet hole of the 
shaft, the solution of problem (3.1)-(3.2), (5.1)-(5.2) is determined mainly in a field corres- 
ponding to the compression of a half-space with a shaft [see (5.7) and compare with (3.8)]. 
The second term of the boundary layer, in contrast to Part 3, does not comform to the Lekh- 
nitskii solution. It is connected with the following linear combination of solutions (I.i)- 
(1.2) and (1.3)-(1.4) discussed in [i]: 

(3/a)d2(l --v2)(vRa) -1 {u(2)(~)-- u(1)(~) }. (5.9) 

It should be noted that, in accordance with (i.i), (1.3), expression (5.9) does not 
have a singularity at v § 0. The field (5.9) coincides to within the multiplier with the 
solution U presented in [i] for a homogeneous problem in a half-space with a vertical shaft. 
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